Ein Ausflug in Zins und Zinseszins - Die Welt der Zahlen

Direkt zum Seiteninhalt

Ein Ausflug in Zins und Zinseszins

Zahlen > Zahlensysteme
Zins und Zinseszins
Zinsen sind vor allem im Bereich der Geldanlage und des Kreditwesens von großer Bedeutung. Wer sein Vermögen möglichst gewinnbringend anlegen möchte, sollte sich mit der Zinsrechnung auskennen. Denn nur der ist in der Lage, anhand der Zahlen um Zins und Zinseszins genau zu berechnen, um wie viele Euro genau ein Guthaben nach zwölf oder 24 Monaten angewachsen ist oder wie viele Euro mehr ein Auto kostet, das mit einem Darlehen über 5 Jahre finanziert wird. Der Kunde sieht die Unterschiede konkret in Euro und Cent und nicht in abstrakten Prozentzahlen, Einsparmöglichkeiten werden augenfällig. Diese Art der Transparenz pflegen auch manche Kreditinstitute wie z.B. die Braunschweigische Landessparkasse mit ihrem Sparkassen Girokonto, die für jeden Bedarf das passende Kontomodell bereithält und mit ihrer Finanz-App für eine noch einfachere Handhabung der Bankgeschäfte ihrer Kunden sorgt.
Einfache Zinsen
Die Formel für einfache Zinsen lautet:

Z = ( K * p * t ) / 100

Wobei Z = Zinsen, K = Kapital, p = Zinsfuß und t = Zeiteinheit ist. Der Zinsfuß wird in der Regel als Jahressatz angegeben und deshalb muß bei einer Tagesberechnung mit t Tagen der ermittelte Wert nochmals durch 360 dividiert werden (die Banken berechnen den Monat unabhängig von seiner tatsächlichen Länge immer mit 30 Zinstagen).                             
Zinseszins
Hierbei werden die einfachen Zinsen in der Folgeperiode zum Kapital addiert. Die Endsumme erhöht sich hierbei im Laufe der Jahre wesentlich schneller als beim einfachen Zins. Die Formel lautet:

K = K * ( 1 + ( p / 100 ) ) n

Wobei n die Anzahl der Perioden (in der Regel die Anzahl Jahre) darstellt.

Ein Vergleich in welchem Zeitraum sich das Kapital bei einfachem Zins und bei Zinseszins verdoppelt:  
%-Satz
einfacher Zins
Zinseszins
7 %14 Jahre, 104 Tage10 Jahre, 89 Tage
10 %10 Jahre7 Jahre, 100 Tage
Eine einmalige Einzahlung von 1000 € wächst in (Jahren)

2 %3 %4 %5 %6 %7 %8 %9 %
auf €
110201030104010501060107010801090
210401061108211031124114511661188
310611093112511581191122512601295
410821126117012161262131113601412
511041159121712761338140314691539
611261194126513401419150115871677
711481230131614071504160617141828
811711267136914771594171818511993
911941305142315511689183819992172
1012181344148016291791196721592367
Eine monatliche Einzahlung von 100 € wächst in (Jahren)

2 %3 %4 %5 %6 %7 %8 %
auf €
11213122012261233123912461252
22450247625012527255225782604
33712376938273886394540044065
45000510252065312542055305642
56313647566406810698471637345
67652788881328383864289099185
790189344968310035104001077911171
810411108441129711769122631277913317
911832123891297513590142381491915634
1013282139801427015502163311720818137
Zurück zum Seiteninhalt